Algebraic renormalization of parity-preserving QED3 coupled to scalar matter I: unbroken case

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electron-pair condensation in parity-preserving QED3

In this paper, we present a parity-preserving QED3 with spontaneous breaking of a local U(1)-symmetry. The breaking is accomplished by a potential of the φ6type. It is shown that a net attractive interaction appears in the Møller scattering (s and p-wave scattering between two electrons) as mediated by the gauge field and a Higgs scalar. This might favour a pair-condensation mechanism.

متن کامل

Simplicial gravity coupled to scalar matter

A model for quantized gravity coupled to matter in the form of a single scalar field is investigated in four dimensions. For the metric degrees of freedom we employ Regge’s simplicial discretization, with the scalar field defined at the vertices of the four-simplices. We examine how the continuous phase transition found earlier, separating the smooth from the rough phase of quantized gravity, i...

متن کامل

0 Renormalization Group Study of Chern - Simons Field Coupled to Scalar Matter in a Modified BPHZ Subtraction Scheme ∗

We apply a soft version of the BPHZ subtraction scheme to the computation of two-loop corrections from an Abelian Chern-Simons field coupled to (massive) scalar matter with a λ(Φ†Φ)2 and ν(Φ†Φ)3 self-interactions. The two-loop renormalization group functions are calculated. We compare our results with those in the literature. PACS: 11.10.Gh, 11.10.Hi, 11.10.Kk Typeset using REVTEX ∗Copyright by...

متن کامل

Expanding universes with scalar fields coupled to matter Roberto Giambò

We study the late time evolution of flat and negatively curved FriedmannRobertson-Walker (FRW) models with a perfect fluid matter source and a nonminimally coupled scalar field having an arbitrary non-negative potential function V (φ). We prove using the methods of dynamical systems, that equilibria corresponding to non-negative local minima for V are asymptotically stable. We classify all case...

متن کامل

Algebraic Flux Correction I Scalar Conservation Laws

This chapter is concerned with the design of high-resolution finite element schemes satisfying the discrete maximum principle. The presented algebraic flux correction paradigm is a generalization of the flux-corrected transport (FCT) methodology. Given the standard Galerkin discretization of a scalar transport equation, we decompose the antidiffusive part of the discrete operator into numerical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physics Letters B

سال: 1997

ISSN: 0370-2693

DOI: 10.1016/s0370-2693(97)00950-7